

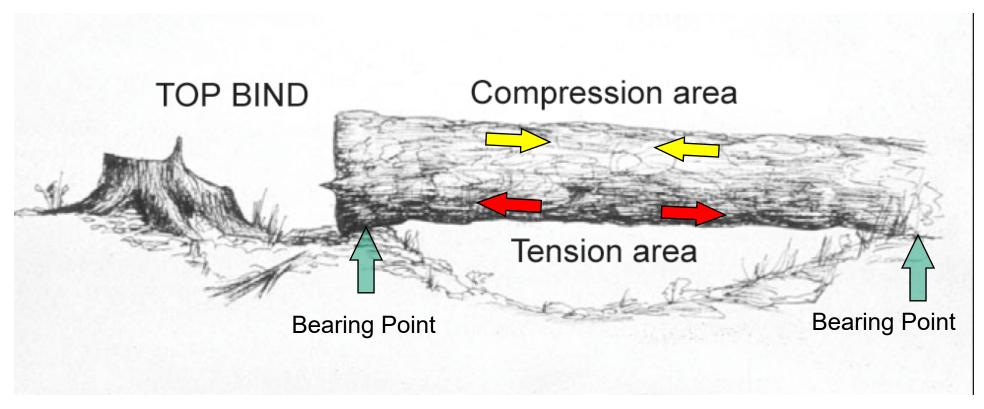
Bind Analysis & Cut Sequence

For Trainee Saw Operators and Saw Operators

April 2017

Course Overview

- Types of Binds
- Types of Cuts
- General Considerations
- Hazard Tree Scenario

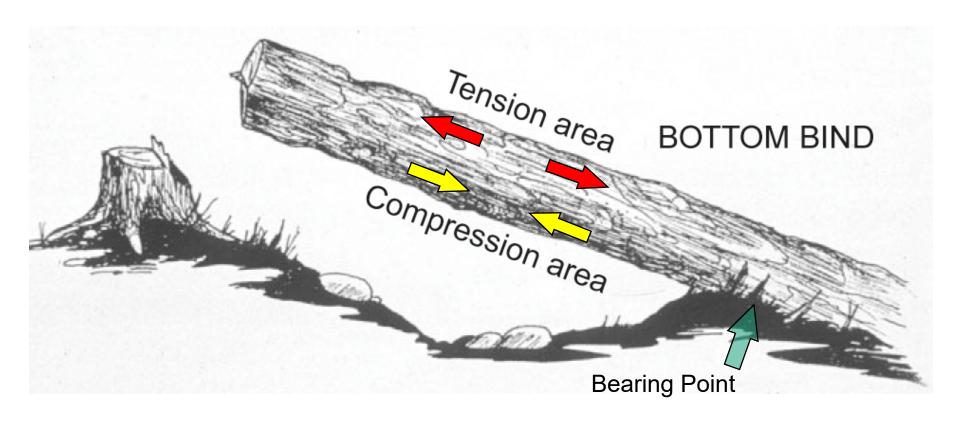


Types of Binds

- Top bind
- Bottom bind
- Side bind
- End bind
- Compound binds

Top cut and finish from bottom – add pie cut if needed

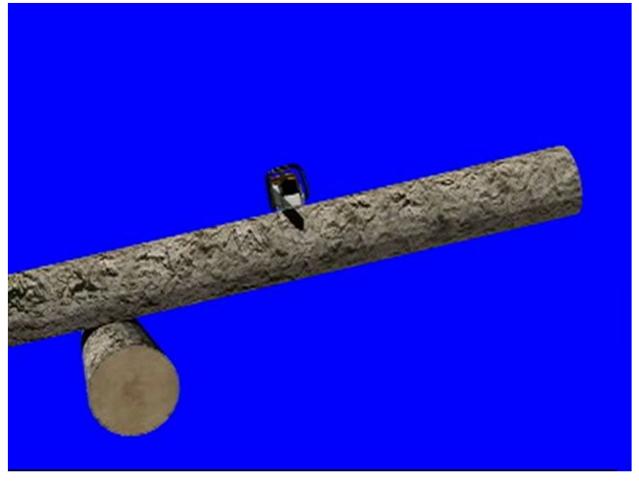
Top cut and finish from bottom



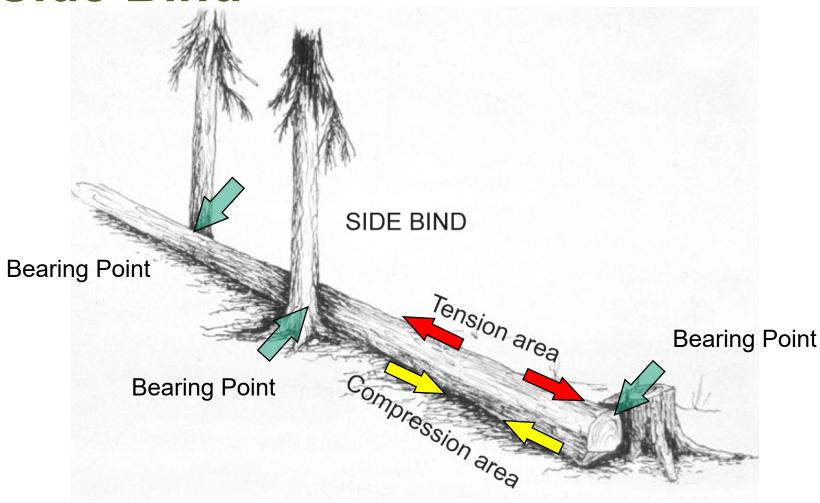
Cut from Top and Wedge

(Wildland Fire Chain Saws, S-212 Video, National Wildfire Coordinating Group)

Underbuck – Then top cut – Be ready for lots of movement


Cut at Bearing Point, when possible

Watch kerf as it opens during release cut



(Wildland Fire Chain Saws, S-212 Video, National Wildfire Coordinating Group)

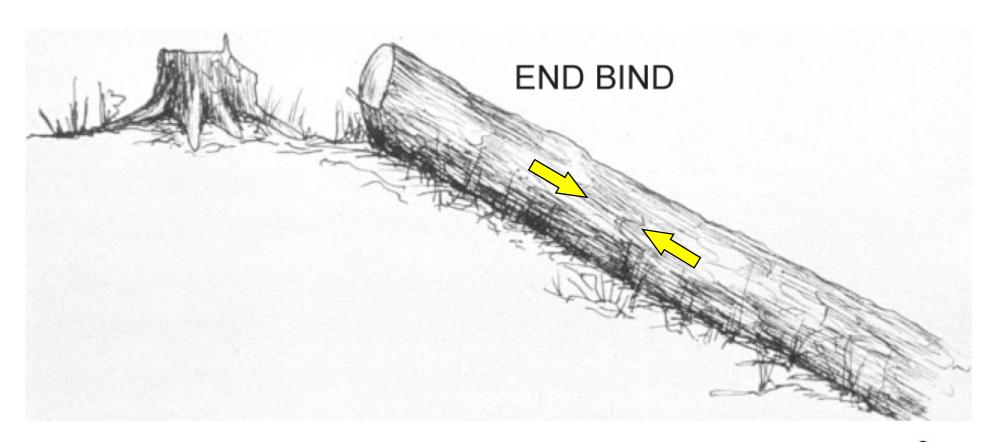
Side Bind

Safely relieve bind on compression side

ASTONAL SCENIC TRAIL

Side Bind

- Cut at the point of compression if possible
- This is an example of what not to do...


Side Bind

(Wildland Fire Chain Saws, S-212 Video, National Wildfire Coordinating Group)

End Bind

Weight of log causes compressive forces - use wedges

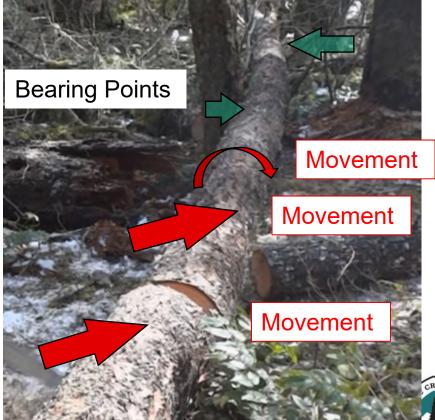
End Bind

(Wildland Fire Chain Saws, S-212 Video, National Wildfire Coordinating Group)

End Bind

Weight of log causes compressive forces - use wedges

Compound Binds


- Compound binds are a combination of two or more binds
- Binds can move and change during the cutting process
 - Cutting the log reduces weight in sections and changes bind
 - Moving bearing points changes binds
- Side binds usually transition to top or bottom bind as the side bind is relieved
 - Side bind forces add bearing points to the log
 - ▶ As side bind is relieved, bearing points change
- Compound binds also include twisting or torsional binds
- Constantly assess log thru the cutting sequence for changes in the binds and the kerf

Compound Binds

Side Bind transitions to more bottom bind Changes in bearing points
Torsional bind due to holding wood

93

www.pcta.org PCTA - Safety & Review April 20

Binds Review

- Top bind
- Bottom bind
- Side bind
- End bind
- Compound binds

Cut Compression First!

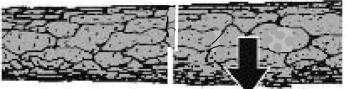
Types of Cuts


Straight Cuts

- Continuous top or bottom bind
- Small logs, low bind conditions
- Can be angled to allow clearance

Compound Cuts

Large logs, hillside logs with end bind


STRAIGHT CUT Top cut or wedge Undercut

Off-set Cut

- Continuous top or bottom bind
- Straight Cut with offset to fixed end
- Best protection for crosscut saw
- Allows for control of release

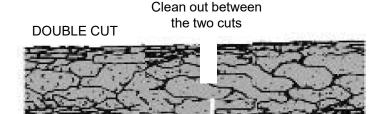
OFF-SET CUT

Drops away

95

Types of Cuts

Pie Cut


- Use with all binds
- Use to allow for travel and control
- Useful with Chainsaw
- Rarely used with crosscut saw
- Can also be just a series cuts with the tip of the bar

Double Cut

- Severe side bind, large rotten logs
- Logs with torsion, shattered log
- Clean out with Pulaski if needed
- Can be used to relieve side bind for crosscut saw

Release Cut

Release Cut

Types of Cuts

Double Off-set Cuts (Crosscut saw)

- Continuous top or bottom bind
- Best protection for crosscut saw
- Allows section to drop out
- Cut compression cuts first, then tension cuts

Drops away

Straight Cut

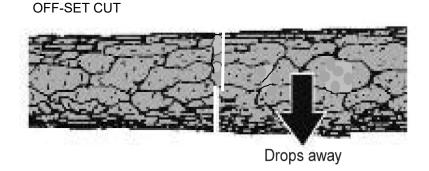
Sequence:

- Offside Cut: Remove material on offside of log, when there is ample retaining holding wood
- ▶ Compression Cut: Cut compression side as early as possible and add pie-shaped cut if needed to allow log to move and relieve bind – Don't go over 1/3 of the diameter
- ▶ Bucking Side Cut: Useful to remove additional holding wood on the side of the release cut for large logs (similar to offside cut). Cut from Compression to Tension.
- ▶ Tension (Release) Cut: Remove holding wood cutting only on the tension side. Use wedge as back up for unexpected change in bind and for end bind.

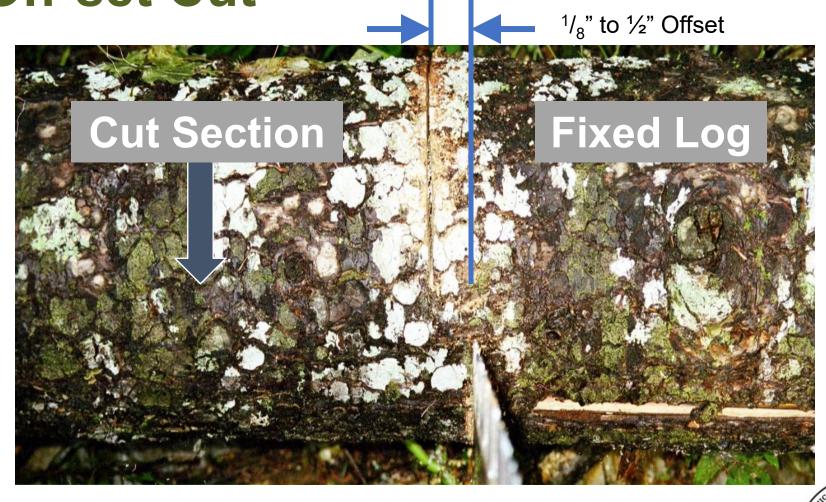
AATTONAL SCENIC THAU

Straight Cut

- Offside Cut and Bucking Side Cut:
 - Not common with Crosscut sawing, but can be used to get more material removed when double bucking
 - ► Can reduce amount of holding wood to finish when single bucking, especially useful when sawyers are at different heights
 - ► Very common with chainsaw use to reduce the length of the bar in the log during the release cut

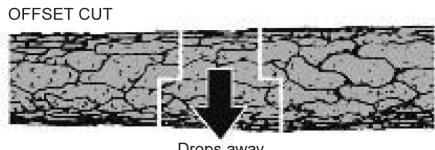

Compound Cut

- Face the direction to roll out section and make a "V" with arms
- Two angled cuts allow for clearance to roll out section
- Slight compound angle Top angle opens outward and is tilted, to be wider on the top than bottom of log
- Straight cut through and back up with wedges when cutting
 COMPOUND CUT
- Shoot for 5° angles



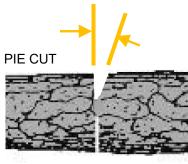
Off-set Cut

- Allows controlled release of cut section
- Compression: Cut compression side
- Tension Cut:
 - ▶ Off-set top kerf approximately ½" from bottom kerf
 - ► Ensure the offset is made correctly to allow the cut piece to drop and the kerfs overlap, to sever the holding wood
- Increasing the width of the offset, up to 6", can lock the cut piece to control twist or torsion



Double Off-set Cut

- Allows controlled release of cut section
- Compression: Cut compression side
- Tension Cut:
 - ▶ Off-set top kerf approximately ½" from bottom kerf
 - ▶ Top kerf will be closer to center of trail relative to the bottom



Pie Cut

- Useful with heavy bind, to remove material to allow log to move and to control the movement of the log
- Angle of pie cut only needs to match the expected angle the log needs to change, usually 10-30°
- Don't cut deeper than 1/3 of the diameter of log

Max angle of pie cut

Release Cut

Initial log centerline

log centerline after pie cut and release cut

104 ***roxa

Double Cut

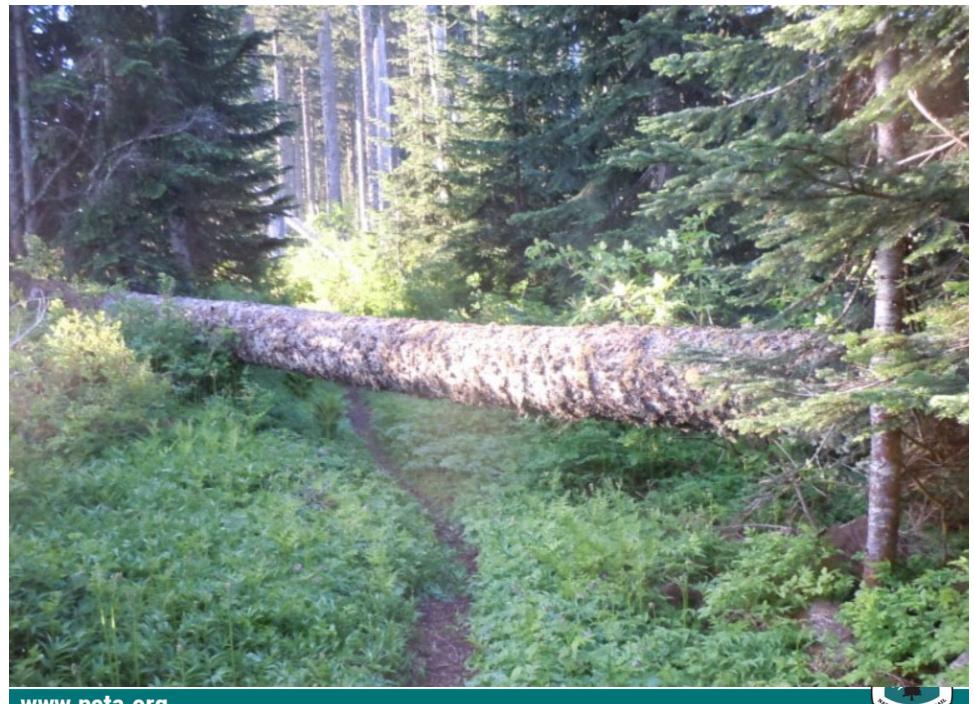
- Single buck from safe (compression) side to cut two parallel top kerfs, the width of a Pulaski
- When saw starts to bind, remove saw, using the adze of the Pulaski, remove wood fiber from between two kerfs
- Repeat until log severed, or bad wood is removed and normal cutting process can be used
- Can be used with compound binds when they are too complex to identify dominate binds

Double Cut

- Can also be used to remove sections, where the wood is split within the log.
- Binds will change across the split sections, and cutting across the splits can bind the saw.
- Cut two parallel cuts, each one a little at time.
 Continue cutting back and forth and try to align saw to be parallel to the split.
- Use poll of ax to knock out cut sections.
- For chain saw, use tip of bar to minimize amount of bar in the wood, when cutting splintered wood.

06

Plumb Cut


- Variation of the Straight Cut
- On steep slopes go above the back slope and make a plumb cut
- Used when log is angled and cut piece must drop

Trail Tread

Types of Cuts Review

- Straight Cuts
- Compound Cuts
- Off-set Cut
- Pie Cut
- Double Cut
- Double Off-set Cut

Cutting Sequence

- Review Binds, Pivots, Supports, Bearing Points, etc.
- Determine safe areas to work
- Plan cuts to address the level of Complexity in the log or logs
- Don't be target focused may need to start at end far from trail to safely mitigate hazards
- Use limbs or remaining mass of tree to help secure cut pieces, or remove as needed to reduce hazards
- Focus on cutting sequence to remove the stored energy in the log in the most controlled manner

Plan for Release Cut

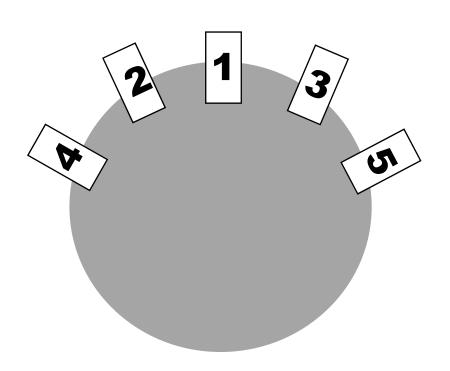
- How will the log move? What is the safe side?
- Is there room for the cut piece to release? Type of Cuts?
- Where will the cut piece travel?

Cutting Compression Side First

115

Wedge, Wedge, Wedge

Get a wedge in as soon as the saw is fully in the log


Carry Lots of Wedges

Turn a top bind into a bottom bind with wedges

Wedge Placement

Cut Piece Track

- Make sure everyone has a safe working area
- Secure switchbacks for trail users, if needed
- Plan for use of added supports to guide or move after cut (rails or pivots)
- Clear path and add supports BEFORE cutting begins

www.pcta.org

119

Hazard Awareness

- Overhead Survey
- Ground Survey walk the length of the log
- Identify spring poles and brush, pivots and root wad
- Establish binds and bearing points
- Determine cutting sequence
- Determine how the binds will change thru cutting sequence
- Determine movement of cut pieces
- Establish Escape Routes and safe areas for crew
- Announce Plan and Review if things change from plan

Course Review

- Types of Binds
- Types of Cuts
- Cutting Sequence
- General Considerations

Hazard Tree Study

Warm Springs Indian Reservation

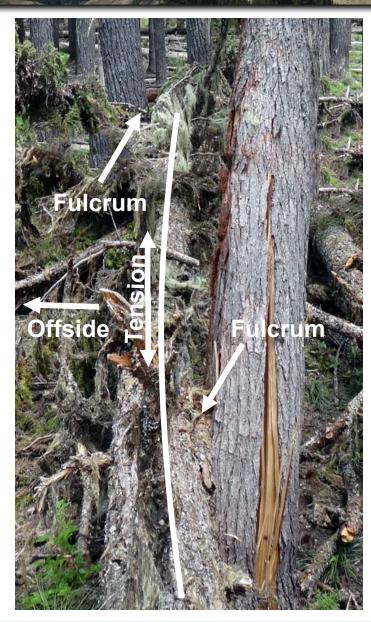
July 2012

Scenario

- High winds caused two trees to uproot and fall across the PCT.
- On their way down, they collided with the crown of a third tree, just a few feet from the trail, causing its trunk to shatter vertically and the tree to lean over the trail.
- The third tree did not fall because its crown became entangled in the crowns of two trees on the other side of the trail.

Proximity of Trees to Trail

Condition of Leaner


Side Bind

- Because the northernmost blowdown was wedged between the leaner and a sound tree on the other side of the trail, it developed a severe side bind.
- This tree had approximately 6 feet of horizontal bend over a distance of 50 feet.

Side Bind

Go or No-Go?

- Using established Go/No-Go criteria, the initial volunteer saw crew decided his situation was beyond their capability.
- The crew clearly marked the hazard area and reported the situation to the USFS, the agency managing this section of the PCT.

Marked Hazard Area

Two Weeks Later...

- A second crew of volunteers plus a USFS recreation manager returned to site.
- Decision was made to temporarily reroute trail 15 feet west to avoid leaner.
- Area was cleaned up. Log with side bind severed (with 3 feet of springback). All logs bucked, opening temporary bypass.
- Long-term plan: return trail to original route after subsequent winter winds take down leaner.

Reroute

